Detection of Buried Land Mines with High-Frequency Seismic Waves

Waymond R. Scott, Jr.a, Christoph Schroedera, Seung-Ho Lee a, Peter H. Rogersb, James S. Martinb, Gregg D. Larsonb, and George S. McCall IIc

aSchool of Electrical and Computer Engineering
bSchool of Mechanical Engineering
cGeorgia Tech Research Institute
Georgia Institute of Technology
Atlanta, GA 30332
waymond.scott@ece.gatech.edu
404-894-3048
April 22, 2002
Outline

• Introduction

• Theoretical Model
 – Interaction of Elastic Waves with a Buried Land Mine
 – Resonant Behavior of a Buried Land Mine

• Experimental Model
 – Laboratory Model
 – Field Model

• Elastic Wave Sources and Sensors
 – Focused Antenna Array

• Conclusions
Elastic/Electromagnetic Sensor

Configuration of the Sensor Currently being Studied
Outline

• Introduction
• Theoretical Model
 – Interaction of Elastic Waves with a Buried Land Mine
 – Resonant Behavior of a Buried Land Mine
• Experimental Model
 – Laboratory Model
 – Field Model
• Elastic Wave Sources and Sensors
 – Focused Antenna Array
• Conclusions
Elastic Waves in the Ground

- To investigate the elastic wave motion in the soil, a numerical model has been developed.
- Scenario:
 - A source on the surface launches elastic waves.
 - The waves propagate along the surface and in the medium.
 - The waves are scattered by an object buried in the ground.
Elastic Waves in the Ground

- Pressure Wave
- Shear Wave
- Rayleigh Surface Wave
- Lateral Wave
- Leaky Surface Wave

Waves in the far field:
3-D model: semi-infinite half-space.
Medium is assumed to be linear, isotropic, lossless.
The transducer (source) is modeled by exciting the normal particle velocity on the surface.
The air-ground interface is modeled by a free-surface boundary condition.
The solution space is surrounded by a Perfectly-Matched-Layer (PML) absorbing boundary.
A discrete numerical grid is introduced.
Material Properties

- In experiments, mines have been buried in sand.
- The material properties of sand can be described by three independent quantities: ρ, c_p, c_s.
- The soil properties of sand have been measured as a function of depth:
 - Due to changes in the water content, the material density changes with depth.
 - Both shear and pressure wave speed vary with depth.
 - “Slow” layer close to the surface. Pressure and shear wave speed increase rapidly beyond the surface layer.
Polarization of Surface Waves Observed in the Models
Outline

• Introduction

• Theoretical Model
 – Interaction of Elastic Waves with a Buried Land Mine
 – Resonant Behavior of a Buried Land Mine

• Experimental Model
 – Laboratory Model
 – Field Model

• Elastic Wave Sources and Sensors
 – Focused Antenna Array

• Conclusions
Antipersonnel Mine

Model
- Mine is discretized with cubes;
- Main chamber consists of plastic explosives;
- Trigger mechanism (springs, firing pin);
- Small air-filled plastic case;
- Rubber pressure plate;
- Air-chambers

TS-50 Mine
- Plastic explosive,
- Trigger mechanism;
- Plastic case;
- Rubber pressure plate;
- Air-chambers
Mine-Wave Interaction

Source

Mine

80 cm

2 cm
Outline

• Introduction
• Theoretical Model
 – Interaction of Elastic Waves with a Buried Land Mine
 – Resonant Behavior of a Buried Land Mine
• Experimental Model
 – Laboratory Model
 – Field Model
• Elastic Wave Sources and Sensors
 – Focused Antenna Array
• Conclusions
Detailed Mine Model

- The mine model used thus far is very simple.
- To study the resonance at the mine location, a mine model is created which includes more details of the mine:
 - Case
 - Explosives
 - Rubber Plate
 - Air Chambers
Detailed Mine Model

- Mine buried 2 cm beneath the surface.
- $\varphi = 1400 \text{ kg/m}^3$, $c_p = 250 \text{ m/s}$, $c_s = 40 \text{ m/s}$
Resonance

- Mine buried 1 cm beneath the surface
- Shear wave speed $c_s = 40$ m/s
- The pressure wave speed and the material density are kept constant in the following:
 - $c_p = 250$ m/s
 - $\rho = 1400$ kg/m3
Resonance

- Resonance as a function of the shear wave speed:
- Mine buried at 2 cm
Resonance

- Resonance as a function of burial depth:
- Shear wave speed $c_s = 40 \text{ m/s}$
Resonance

• First resonance:

Resonant Frequency

Quality Factor
Experiment

• TS-50 AP mine at 1 cm
Outline

• Introduction
• Theoretical Model
 – Interaction of Elastic Waves with a Buried Land Mine
 – Resonant Behavior of a Buried Land Mine
• Experimental Model
 – Laboratory Model
 – Field Model
• Elastic Wave Sources and Sensors
 – Focused Antenna Array
• Conclusions
Experimental Results

- Both anti-tank and anti-personnel mines have been investigated.
 - Anti-Tank Mines
 - Two Inert Mines: VS-1.6 and VS-2.2.
 - Acrylic Plastic: 30 cm by 30 cm by 7.5 cm.
 - Simulated Mine: SIM-30; depths to 30 cm.
 - Anti-Personnel Mines
 - Four Inert Mines: PFM-1, M-14, TS-50, and VS-50.
 - Clutter Items
 - Rocks, Sticks, Cans, Surface Cover (Pine Straw).

- Resonance
 - All of the inert AP and AT mines studied exhibit a resonant response which enhances the response of the mine and can be used to help distinguish it from clutter.
 - Other types of mines are expected to exhibit this type of resonance.
Experimental Results

• Results presented today.
 – Laboratory Experiment: Sandbox
 • Single TS-50 mine
 • Single AT mine surrounded by AP mines and clutter.
 – Field Experiment: Georgia Red Clay: CCRF
 • Single TS-50 mine.
Diagram of the Laboratory Model

Elastic Waves

Elastic Wave Transducer

Region scanned with the radar

Mine

Damp Compacted Sand

6.1 m

5.8 m

1.5 m

MINWARA 2002

Waymond Scott, Georgia Tech
Laboratory Experiment
TS-50 Mine 1cm Deep
TS-50 Mine: 1 cm deep
Raw Measured Data: Focused Antenna 20 cm High;
Radar A with Radar B operating

○ Mine
Signal Processing

• Filter out forward traveling waves, leaving only the reflected waves.
 – Enhance the signature of the mine.
 – Resonance.

• Image.
 – Energy in the reflected wave at times near the time of arrival of the incident wave.
TS-50 Mine: 1 cm deep
Image: Dual Focused Antenna 20 cm High
15 cm of Pine Straw
30 dB Scale

Antenna A

Antenna B
Experimental Results

• Single AT (VS1.6) Mine surrounded by Multiple AP mines and clutter.
 – VS1.6 buried 4 cm deep.
 – VS-50 buried 1 cm deep.
 – TS-50 buried 1 cm deep.
 – PFM-1 buried 1 cm deep.
 – Two rocks buried approximately 2 cm deep.
 – Two metal cans buried 2-3 cm deep.
 – Metal rod buried 2 cm deep.
 – Wood stick buried 2 cm deep.
Minefield Covered with 15 cm of Pine Straw
Photograph of the Uncovered Mines and Rocks.
Single AT Mine Surrounded by AP Mines and Clutter
Raw Measured Data: Focused Antenna 20 cm High; 15 cm of Pine Straw
Single AT Mine Surrounded by AP Mines and Clutter
Raw Measured Data: Focused Antenna 20 cm High; 15 cm of Pine Straw
30 dB Scale

Surface Clean

Surface Covered with 15 cm of Pine Straw

Intensity, dB

MINWARA 2002 Waymond Scott, Georgia Tech
Field Experiment
Georgia Red Clay: CCRF
Field Experiment; CCRF
TS-50 Mine 0.5 cm deep
Field Experiment; CCRF
TS-50 Mine 0.5 cm deep

Focused Antenna 20 cm High; 30 dB Scale
Outline

• Introduction
• Theoretical Model
 – Interaction of Elastic Waves with a Buried Land Mine
 – Resonant Behavior of a Buried Land Mine
• Experimental Model
 – Laboratory Model
 – Field Model
• Elastic Wave Sources and Sensors
 – Focused Antenna Array
• Conclusions
Elastic Wave Sources and Sensors Development

- Electrodynami"shaker
- Air acoustic source
- Electrical arc source
- Passive air acoustic sensor
- Ultrasonic sensor
- Radar sensor
Array of Stand off Sensors

- Requirements
 - Standoff
 - Spatial resolution
 - Sensitivity
 - Speed
 - Linear N element array: N times faster
 - Planar N by N array: N^2 times faster
 - Surface roughness
 - See though surface vegetation/clutter
 - Cost
Current Radar Sensor

Elastic Wave Source

Elastic Wave

Elastic Wave Beam

Radar Beam

Lens-Focused Corrugated Horns
Focused Antenna

Lens-Focused Corrugated Horn
Conclusions

• The technique shows great promising.
 – System detects both simulated AP and AT mines.
 – System discriminates between mine and some common types of clutter.
 – Focused antenna and array perform well.
 – System seems to be robust in varying soil conditions.

• Ongoing investigations.
 – Focused antenna array.
 – Alternative sensor arrays.
 – Signal processing techniques.
 – Mechanical properties of soils (wave speeds vs depth, nonlinearities, etc.).
 – Range of soil types.